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Introduction: Oil in water is a product of 

wastewaters from many industrial facilities such 

petrochemical industries, natural gas processing 

plants, nuclear power plants, food processing and 

other agricultural facilities. These wastewaters are a 

multifaceted mixture of water, oil, and condiments, 

such as emulsifiers, corrosion inhibitors, 

antifoaming agents, and biocides. To recycle this 

wastewater or to return it to natural waterways, this 

wastewater must be treated (E. L. Walker et al, 

2002; C. M. Anderson-Cook et al, 2005; M. 

Sadeghian et al, 2014).  

According to (C. M. Anderson-Cook et al, 2005; R. 

Myers et al, 2009), explained that there are some 

published articles on RSM, for which the origin of 

this statistical tool was actually laid by (G. E. P. Box 

et al, 1951). Afterwards, other noteworthy 

contributors for the improvement of RSM include 

(G. E. P. Box et al, 1957; G. E. P. Box et al, 1959) 

and later paper published by (W. J. Hill et al, 1966) 

discusses the practical applications of RSM in the 

area of chemical and processing industries. More so, 

the applications of RSM cut across various fields of 

studies (C. M. Anderson-Cook et al, 2005; R. Myers 

et al, 2009). 
The goal of this paper is to find and improve the 

operating factors that would simultaneously optimize the 

multi-response problems via RSM data for permeate flux 

(L/m
2
h), turbidity removal (%) and chemical oxygen 

demand (COD) removal (%) with the data from the 

literature (M. Sadeghian et al, 2014). 

Response Surface Methodology: According to (R. 

Myers et al, 2009; D. Gramato et al, 2014) [9], defined 

RSM as statistical procedure applied by engineers and 

industrial statistician for empirical model building, with 

the intention of optimizing the response variables which 

are influenced by several explanatory variables or design 
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variables with a limited number of experiments (E. L. 

Walker et al, 2002; O. Eguasa et al, 2022). 

 RSM is suitable for optimizing the response variable   

as a function of more than one explanatory variable 

(                     ) which can be modeled as: 

   𝑓(              )                             

(1) 

where    is the error term and assumed to have a normal 

distribution with mean zero and variance   . The surface 

represented by  𝑓(                     )  is called a 

response surface (W. Wan et al, 2011). 

The true response function 𝑓 is unknown which needs to 

be estimated. Applying RSM, we try to identify the 

functional relationship between the responses   and 

related explanatory variables (                     ). 

The Parametric Regression Model    

The conventional technique used in modeling the 

relationship between the kth explanatory variables and 

the ith response is to assume that the basic functional 

form can efficiently be expressed parametrically. The 

parametric regression model may be superior, if the user 

can identify adequately a parametric form for the data.  

Hence, the general parametric regression model in matrix 

notation can be written as: 

                           (2) 

where   is a vector of response,        ) is the OLS 

model matrix,   is the unknown parameter vector and   

is the vector of error term assumed to be normally 

distributed with zero mean and constant variance 

property. 

The Quadratic Regression (QM) Model 

The Quadratic model is given as:      

                     
      

              
                 (3)   

 

where             are the explanatory variables;    

is a constant coefficient; the varying coefficients        

and         are the coefficients of linear, quadratic and 

interaction terms respectively (M. Sadeghian et al, 2014). 

The ordinary least squares  

The common approach for estimating the parameter 

vector in Equation (2) is usually based on the Method of 

OLS. The parameter vector estimates  ̂  in (2) is given 

as: 

 ̂    )   (      )     ))
  

      )           )     (4) 

The estimated responses for the     location can be 

written as : 

 ̂ 
    )

   
     )

 ̂    )  

  
     )

(      )     ))
  

      )               
              (5) 

where   
     )

is the     row of matrix      )        

 ) vector. (M. K. Carley et al, 2004; D. L. Rivers, 2009). 

Materials and Methods 

As given in the literature, the two operating factors are 

trans-membrane pressure (TMP) and velocity with the 

multi-response variables; permeate flux (PF), turbidity 

removal and the chemical oxygen demand (COD) 

removal. The goal is to obtain an optimum setting of the 

factors that would simultaneously maximize PF, turbidity 

removal and COD removal (M. Sadeghian et al, 2014). 

The idea behind the local linear regression model is 

because it is flexible and can adapt favourably in 

addressing boundary bias problem and is not constrained 

to user specified form for the data (D. Gramato et al, 

2014; O. Eguasa et al, 2019). 

The Local Linear Regression (LLR) Model 

An alternative technique when the researcher lack 

information or there is partial knowledge of the 

functional form of the model, then the use of 

nonparametric regression model is most appropriate 

model and as such, the LLR model  gain emphasis in this 

situation. The LLR model is a weighted form of the least 

squares obtained from Local Polynomial Regression of 

order one, which is an improvement over the kernel 

regression model because it can adjust to bias both at the 

boundaries of the explanatory variables (D. Ruppert et al, 

1994; E. L. Walker et al, 2002).  

The LLR model is derived from ordinary least squares 

theory. The LLR estimator  ̂ 
    )

 of    is given as: 

 ̂ 
    )

 

  
     )

       )   
    ))        )      

    )
               

  (6) 

where          )
 ,   

     )
           ) is the     

row of the LLR model matrix,      ) given as:   

     )   [

           

           

     
           

]        (7)       

We define W, an     diagonal matrix of kernel weights 

for estimating the response as  
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         ,                               ; 

                              
where 𝑐  are kernels weight at ith location and     is the 

Kronecker delta function given as 

      {
     𝑓    

            𝑒    𝑒

 

                            ;                                          
            (8) 

Thus,  

   [

                
                

    
                

]                   (9) 
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]  

where        ,        , …,        . In terms 

of location,        

 

     [

      
      
    
      

],  

                            .               (10) 

(W. Wan et al, 2011; O. Eguasa et al, 2019). 

Equation (10) can be written as:   

   𝑑 𝑎         ,…,    )   

for each                             . 
We can rewrite Equation (6) in terms of hat matrix 

as: 

 ̂    )       ) ,     (11) 

where the     matrix,      )  is the LLR hat 

matrix written as: 

      )  

[
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(      )   
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           (12) 

 

The weakness of LLR model is high bias in areas 

where there is curvature because the setup of model 

matrix of the LLR model do not incorporates 

quadratic terms (Z. He et al, 2009).  

Locally Adaptive Bandwidths  

According to (O. Eguasa et al, 2022) presented data-

driven locally adaptive bandwidths:  

𝑏   𝑓 (    
 

 
   𝑇    𝑇  )  𝑇   

 

 
−

   

   
)               ; 𝑗             

(13) 

where,  < 𝑏  ≤       𝑇  >    𝑇  >  . 

Experimental Design 

In RSM application, the factors are more than one. 

Hence, the choice of suitable levels to be studied for 

the explanatory variables is also vital as it can affect 

model correctness. The Experimental Design phase 

permits an appropriate design that can adequately 

and substantially estimation relationship between 

the response and one or more factors. Usually 

applied DOEs in RSM include:    full factorial 

design,    full factorial design, and the Central 

Composite Design (CCD).   

Therefore, the factors and coded levels as given in 

the literature are shown below in Table 1: 

Table 1:  Coded stages and range for the design of experiments (M. Sadeghian et al, 2014) 

Variables Factors or Input 

parameters 

Coded Levels 

-1.414(- ) -1(Low) 0(Medium) 1(High) +1.414(+ ) 
TMP (bar)      0.7 1.0 1.7 2.5 2.8 

Velocity (m/s)      1.0 1.5 2.6 3.7 4.2 

 

In  Table 2, given below is the CCD as given in the literature for two experimental factors and three 

responses. 
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Table 2:  Coded stages and range for the design of experiments (M. Sadeghian et al, 2014) 

Exptal. 

Run 

Exptal. Design Coded Levels 

A: TMP (code) B: Velocity (code) PF (L/m
2
h) Turbidity Removal (%) COD Removal (%) 

1 0.7 (-1.414) 2.6 (0) 40 82 78 

2 1.7 (0) 1.0 (-1.414) 32 85 82 

3 1.7 (0) 2.6 (0) 48 74 79 

4 2.5 (+1) 3.7 (+1) 64 72 68 

5 2.8 (+1.414) 2.6  (0) 52 70 69 

6 2.5 (+1) 1.5 (-1) 42 68 78 

7 1.7 (0) 2.6 (0) 50 73 81 

8 1.7(0) 2.6 (0) 47 75 78 

9 1.7(0) 2.6 (0) 49 77 80 

10 1.7(0) 4.2 (+1414) 68 69 68 

11 1.0 (-1) 3.7 (+1) 58 80 73 

12 1.0 (-1) 1.5 (-1) 33 88 82 

13 1.7 (0) 2.6 (0) 49 76 79 

 

 

Data transformation to RSM data in the interval 

of zero and one 

The values of the operating factors are coded 

between 0 and 1. The data collected via a CCD is 

transformed by a mathematical relation: 

 

      
        )   

(        )         ))
      (14)  

 

where      is the transformed value,    is the target 

value that needed to be transformed in the vector 

containing the old coded value,  represented as 

    ,          ) and  𝑎      ) are the minimum 

and maximum values in the vector 

     respectively, (O. Eguasa et al, 2022). The 

natural or coded variables in Table 1 can be 

transformed to explanatory variables in Table 2 

using Equation (14).  

Target points needed to be transformed for location 

2 under the coded variables are given below: 

 

Target points     −         ;          )   −
       −     ;   𝑎      )                

 

     
        ) −   

(        ) −  𝑎      ))
 

 

    𝑎 𝑎      𝑎  𝑎𝑏 𝑒        

 
−     −  −     )

  −     ) −  −     ))
        

 

    𝑎 𝑎      𝑎  𝑎𝑏 𝑒        

 
−     −   )

  −     ) −        ))
        

where                  𝑒  𝑐    

 

Hence, we now generate values of the operating 

factors that lie between zero and one for RSM data 

as given in Table 3. We shall fit the coded values to 

the quadratic model of Equation (3) and thereafter 

fit the OLS and the adaptive LLR model to the RSM 

data that are coded to lie in the interval of 0 and 1 

inclusively as given in Table 3. 
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Table 3:  Transformed RSM data in the interval of zero and one 

Exptal. 

Run 

Exptal. Design Coded Levels 

A: TMP (code) B: Velocity (code) PF (L/m
2
h) Turbidity Removal (%) COD Removal (%) 

1 0.0000 0.5000  40 82 78 

2 0.5000  0.0000  32 85 82 

3 0.5000  0.5000  48 74 79 

4 0.8536  0.8536   64 72 68 

5 1.0000  0.5000  52 70 69 

6 0.8536  0.1464  42 68 78 

7 0.5000  0.5000  50 73 81 

8 0.5000  0.5000  47 75 78 

9 0.5000  0.5000  49 77 80 

10 0.5000  1.0000  68 69 68 

11 0.1464  0.8536  58 80 73 

12 0.1464  0.1464  33 88 82 

13 0.5000  0.5000  49 76 79 

 

 

Multi-Response Optimization Problem 

This involves the optimization of two or more 

responses simultaneously with the associated factors 

(                     ). The optimization criteria and 

the desired goal for the multi-response problem as 

given in (M. Sadeghian et al, 2014) as shown in 

Table 4 below: 

Table 4: Optimization criteria at the desired goal 

(M. Sadeghian et al, 2014) 

Criteria Goal Lower 

Limit 

Upper 

Limit 

TMP (bar) In the range 1 2.5 

Velocity 

(m/s) 

In the range 1.5 3.7 

PF (L/m
2
 h) Maximize 32 68.4 

Turbidity 

Removal 

(%) 

Maximize 68 88 

COD 

Removal 

(%) 

Maximize 68 82 

 

Based on the type of response, the desirability 

function transforms the estimated response,  ̂   ) to 

different individual scalar measure, 𝑑 ( ̂   )) 

namely: 

For larger-the-better (LTB) response  𝑑 ( ̂   )) is 

given as:   

 

𝑑 ( ̂   ))       {

  

{
 ̂   )  

   
}
  

  

 

        ̂   ) <  

                ≤  ̂   ) ≤ 𝑇

        ̂   ) > 𝑇 

 

            ,         (15)  

where  𝑇and L are the maximum acceptable value 

and lower limit, respectively, of the     response. 

 

where    is the target value of the     response. 

However, for RSM data, the parameters values of  

   𝑎 𝑑    are weights taken to be 1 for linearity (D. 

E. Castillo, 2007; W. Wan, 2007; Z. He et al, 2009; 

Z. He et al, 2012). 

 

In the application, we give the individual 

desirability of the process requirement for the three 

responses. 

For PF (L/m2 h);  𝑑 ( ̂   )) is given as:   
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𝑑 ( ̂   ))      {

  

{
 ̂   )   

       
}
  

  

 

        ̂   ) <   

                 ≤  ̂   ) ≤     

        ̂   ) >      

 

            ,    (16)  

where  𝑇            are the maximum 

acceptable value and lower limit, respectively, of the 

    response. 

For Turbidity Removal (%);  𝑑 ( ̂   )) is given as:   

 𝑑 ( ̂   ))      {

  

{
 ̂   )   

     
}
  

  

 

        ̂   ) <   

                 ≤  ̂   ) ≤   

        ̂   ) >    

  

           ,     (17)  

where 𝑇          are the maximum acceptable 

value and lower limit, respectively, of the     

response. 

For COD Removal (%);  𝑑 ( ̂   )) is given as:   

 𝑑 ( ̂   ))      {

  

{
 ̂   )   

     
}
  

  

 

        ̂   ) <   

                 ≤  ̂   ) ≤   

        ̂   ) >    

  

           ,                (18)  

where 𝑇          are the maximum acceptable 

value and lower limit, respectively, of the     

response. 

The overall desirability function  

The goal of desirability function is to maximize the 

overall desirability,  , which is the geometric mean 

of the individual desirability functions. Overall 

desirability D is given as: 

   √ 𝑑   ̂   ))  𝑑   ̂   ))  𝑑   ̂   ))
 

  

       (19)                          

where     is the number of response variables, 

𝑑  ̂ ( ), 𝑑  ̂ ( ),…, 𝑑  ̂ ( ) are the individual 

desirability (R. Ramakrishnan et al, 2011; Z. He  et 

al, 2012; D. Gramato et al, 2014). The desirability 

function 𝑑 ( ̂   ))            allocate values 

between 0 and 1 centered on the process 

requirements such that the most undesirable and 

desirable values are 𝑑 ( ̂   ))    and 

𝑑 ( ̂   ))    respectively. 

Results and Discussion 

Table 5:  Model Goodness-of-fits statistics for 𝑂 𝑆 𝑄  and        

 

Response Model                            (%)     
 (%) 

   𝑂 𝑆 7.0000 6.7789 47.4521 10.7304 1.5329 99.2081 98.6425 

𝑄  - - - - - 99.1700 98.5800 

       4.0610 5.3970 66.1589 5.2245 1.2865 99.6100 98.8600 

    𝑂 𝑆 7.0000 62.2476 435.7333 69.0777 9.8682 84.8820 74.0834 

𝑄  - - - - - 97.7000 94.5000 

      4.0002 10.8406 142.3846 10.0000 2.4999 97.8114 93.4347 

   𝑂 𝑆 7.0000 5.0451 35.3159 9.0237 1.2891 97.2254 95.2436 

𝑄  - - - - - 97.2500 94.5000 

      4.0307 1.0194 13.6117 5.2902 1.3125 98.3734 95.1574 

 

The results obtained from Table 5 clearly shows that 

        from the respective responses (Permeate 

flux (L/m
2
h), Turbidity removal (%) and COD 

removal (%)) gave the better performance statistics 

as compared with drug dosage over 𝑂 𝑆 𝑎 𝑑 𝑄  in 

twenty two cells as against eight cells for the multi-

response problem supporting a reasonable 

correlation between the experimental and predicted 

values . The bolded cells indicate a better 

performance over cells that are not bold.  
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Figure 1: Model Residuals for y1 (Permeate flux) 

response plotted against the data points for 

                𝑂 𝑆 𝑄  𝑎 𝑑       models. 

 
Figure 2: Model Residuals for y2 (Turbidity 

removal) response plotted against the data points for 

                𝑂 𝑆 𝑄  𝑎 𝑑       models. 

 

 
Figure 3: Model Residuals for y3 (COD removal) 

response plotted against the data points for  

                𝑂 𝑆 𝑄  𝑎 𝑑       models. 

In Figures 1, 2 and 3, it is obvious that the       

model has the minimum residual line over the 

𝑂 𝑆 𝑎 𝑑 𝑄  models as it relates to the zero 

residual line for Permeate flux (L/m
2
h), Turbidity 

removal (%) and COD removal (%). 

Table 6: Model optimal solution based on the multi-response desirability function  

Model        ̂   ̂   ̂  𝑑   ̂ ) 𝑑   ̂ ) 𝑑   ̂ )  (%) 

𝑂 𝑆 0.2066 0.5396 46.0553 79.4585 79.2505 0.3861 0.5729 0.8036 56.23 

   
0.2727 

(1) 
0.6250 (3) 50.6600 78.8300 76.6300 0.5126 0.5415 0.6164 55.51 

      0.1818 0.1642 41.4898 87.0076 81.5456 0.2607 0.9504 0.9675 62.12 

 

From Table 6,       provides a better multi-

response in the maximization of the ultrafiltration of 

oil-in-water emulsion over 𝑂 𝑆 a d 𝑄  in terms of 

overall desirability for the respective factors     
  a       a                )             .

 Obviously,        gave a better process 

requirement with 62% desirability and with 

operating factors                     with 

the best choice based on oil-in-water emulsion.  

 

Table 7: Optimization and process requirement for the actual, predicted factors and responses 
Criteria Goal Lower limit Target point        QM OLS 

TMP (bar) Range 1 2.5 0.1818 0.2727 0.2066 

Velocity (m/s) Range 1.5 3.7 0.1642 0.6250 0.5396 

PF (L/m
2
 h) Maximize 32 68.4 42 51 46 

Turbidity R (%) Maximize 68 88 87 79 80 

COD R (%) Maximize 68 82 82 77 79 

 

 
Figure 4:       surface plot for maximum PF of 

42% showing the effect of TMP and Velocity 

 
Figure 5:       surface plot for maximum 

Turbidity removal of 87% showing the effect of 

TMP and  
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                Velocity 

 
Figure 6:       surface plot for maximum COD of 

82% showing the effect of TMP and Velocity 

 

The maximization of the individual desirability 

functions are given in Figure 4, 5 and 6 shows the 

shapes of the different colour variation in the 

surface plots representing individual desirability of 

the optimization criteria for Permeate flux (L/m
2
h), 

Turbidity removal (%) and COD removal (%) 

respectively. In Figure 4, the individual desirability 

function for       is 42% as against the 

optimization results for 𝑂 𝑆 a d 𝑄  with 

respective individual desirability functions of 46% 

and 51% for Permeate flux (L/m
2
h). Whereas, in 

Figure 5 the individual desirability function for 

      is 87% as against the optimization results for 

𝑂 𝑆 a d 𝑄  with respective individual desirability 

functions of 80% and 79% for Turbidity removal 

(%) and in Figure 6, the individual desirability 

function for       is 82% as against the 

optimization results for 𝑂 𝑆 a d 𝑄  with 

respective individual desirability functions of 79% 

and 77% for COD removal (%). 

Conclusions: In this work, we examined results 

from three regression models 𝑂 𝑆 𝑄  a d       

via the CCD in terms of three factors, five levels and 

three responses for RSM data. We presented a more 

robust       and the factors in the experimental 

matrix were transformed by a mathematical relation 

that needed to lie between zero and one for RSM 

data. We statistically analyzed the experimental data 

using       model for Permeate flux (L/m
2
h), 

Turbidity removal (%) and COD removal (%) in 

terms of performance statistics, residual plots and 

the surface plots over the existing Quadratic model 

and OLS.  The results obtained shows that the 

      is expected to assist further research work on 

ultrafiltration of oil-in-water emulsion. 
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